2025-10-06 14:32:25 -07:00
# BodySpec Insights
**Body composition analytics for BodySpec DEXA scan PDFs**
A Python tool to extract and analyze body composition data from BodySpec DEXA scan reports. Automatically parses measurements, computes 30+ derived metrics, and tracks your progress over time.
> **Note:** This tool is specifically designed for BodySpec PDF reports and may not work with other DEXA providers (DexaFit, Hologic, etc.).
## Features
- 📊 **Comprehensive Data Extraction** : Body fat %, lean mass, bone density, regional composition, and more
- 🧮 **Derived Metrics** : Automatically calculates FFMI, FMI, LSTI, SMI, and other body composition indices
- 📁 **Multiple Output Formats** : CSV (for spreadsheet analysis), JSON (for programmatic use), and Markdown (for readable summaries)
- 📈 **Time-Series Ready** : Append mode allows tracking progress across multiple scans
- 🎯 **Regional Analysis** : Breaks down composition by Arms, Legs, Trunk, Android, and Gynoid regions
- ⚖️ **Muscle Balance** : Tracks left/right limb symmetry
## Installation
### Prerequisites
- Python 3.7 or higher
- pip (Python package manager)
### Setup
1. **Clone or download this repository**
2. **Create a virtual environment** (recommended):
```bash
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
3. **Install dependencies** :
```bash
pip install -r requirements.txt
```
The script requires:
- `pdfplumber` - PDF text extraction
- `pandas` - Data manipulation and CSV handling
## Usage
### Basic Command
```bash
python dexa_extract.py < PDF_PATH > --height-in < HEIGHT > [--weight-lb < WEIGHT > ] [--outdir < OUTPUT_DIR > ]
```
### Required Arguments
- `PDF_PATH` - Path to your DEXA scan PDF report
- `--height-in` - Your height in inches
### Optional Arguments
- `--weight-lb` - Body weight in pounds (used as fallback if PDF doesn't contain total mass)
- `--outdir` - Output directory for results (default: `dexa_out` )
### Examples
**Single scan:**
```bash
python dexa_extract.py data/pdfs/2025-10-06-scan.pdf --height-in 74 --weight-lb 212 --outdir data/results
```
2025-10-06 15:33:05 -07:00
**Batch process multiple scans:**
```bash
# Process all PDFs in a directory (automatically skips already-processed dates)
python dexa_extract.py --batch data/pdfs --height-in 74 --outdir data/results
# Force reprocessing all files
python dexa_extract.py --batch data/pdfs --height-in 74 --outdir data/results --force
```
**Individual scans** (appends to existing files):
2025-10-06 14:32:25 -07:00
```bash
python dexa_extract.py data/pdfs/scan-2025-01.pdf --height-in 74 --outdir data/results
python dexa_extract.py data/pdfs/scan-2025-04.pdf --height-in 74 --outdir data/results
python dexa_extract.py data/pdfs/scan-2025-10.pdf --height-in 74 --outdir data/results
```
**Height conversion** (for reference):
- 5'8" = 68 inches
- 5'10" = 70 inches
- 6'0" = 72 inches
- 6'2" = 74 inches
- 6'4" = 76 inches
## Directory Structure
```
bodyspec-insights/
├── dexa_extract.py # Main extraction script
├── requirements.txt # Python dependencies
├── README.md # This file
├── .gitignore # Git ignore patterns
├── data/ # Data directory (gitignored)
│ ├── pdfs/ # Place your BodySpec PDF reports here
│ └── results/ # Results will be saved here
└── venv/ # Virtual environment (gitignored)
```
## Output Files
The script generates 5 files in the specified output directory:
### 1. `overall.csv`
Time-series data with one row per scan. Includes all primary metrics and derived indices.
**Columns:**
- `MeasuredDate` - Scan date (YYYY-MM-DD)
- `Height_in` , `Height_ft_in` - Height measurements
- `Weight_lb_Input` , `DEXA_TotalMass_lb` , `Adjusted_Body_Weight_lb` - Weight data
- `BodyFat_percent` , `LeanMass_percent` - Body composition percentages
- `FatMass_lb` , `LeanSoftTissue_lb` , `BoneMineralContent_lb` , `FatFreeMass_lb` - Mass measurements
- `BMI` , `FFMI` , `FMI` , `LST_Index` , `SMI` , `BMDI` - Normalized indices
- `ALM_lb` - Appendicular lean mass (arms + legs)
- `VAT_Mass_lb` , `VAT_Volume_in3` , `VAT_Index` - Visceral adipose tissue
- `Android_percent` , `Gynoid_percent` , `AG_Ratio` - Fat distribution
- `Trunk_to_Limb_Fat_Ratio` - Central adiposity indicator
- `Arms_Lean_pct` , `Legs_Lean_pct` , `Trunk_Lean_pct` - Regional lean mass distribution
- `Arm_Symmetry_Index` , `Leg_Symmetry_Index` - Left/right balance (50% = perfect)
- `RMR_cal_per_day` - Resting metabolic rate
### 2. `regional.csv`
2025-10-07 15:24:29 -07:00
Regional body composition breakdown (Arms, Legs, Trunk, Android, Gynoid, Total). Each scan adds 6 rows (one per region).
2025-10-06 14:32:25 -07:00
2025-10-06 17:44:16 -07:00
**Columns:**
2025-10-07 15:24:29 -07:00
- `MeasuredDate` - Date of scan (YYYY-MM-DD)
2025-10-06 17:44:16 -07:00
- `Region` - Body region name
- `FatPercent` - Fat percentage in this region
- `LeanPercent` - Lean tissue percentage in this region
- `TotalMass_lb` - Total mass of the region
- `FatTissue_lb` - Fat mass in the region
- `LeanTissue_lb` - Lean mass in the region
- `BMC_lb` - Bone mineral content in the region
2025-10-06 14:32:25 -07:00
### 3. `muscle_balance.csv`
2025-10-07 15:24:29 -07:00
Left/right limb comparison for tracking muscle symmetry. Each scan adds 6 rows (one per region).
2025-10-06 14:32:25 -07:00
2025-10-07 15:24:29 -07:00
**Columns:**
- `MeasuredDate` - Date of scan (YYYY-MM-DD)
- `Region` - Arms Total, Right Arm, Left Arm, Legs Total, Right Leg, Left Leg
- `FatPercent` , `TotalMass_lb` , `FatMass_lb` , `LeanMass_lb` , `BMC_lb`
2025-10-06 14:32:25 -07:00
### 4. `overall.json`
Structured JSON format containing all extracted data in a hierarchical format.
**Structure:**
```json
{
"measured_date": "2025-10-06",
"anthropometrics": { ... },
"composition": { ... },
"regional": [ ... ],
"muscle_balance": [ ... ],
"supplemental": { ... },
"bone_density": { ... }
}
```
### 5. `summary.md`
Human-readable Markdown summary of the scan results.
## Extracted Metrics
### Primary Measurements
- **Body Fat %** - Percentage of body weight that is fat
- **Lean Mass %** - Percentage of body weight that is lean tissue (complement of body fat %)
- **Fat Mass** - Total weight of fat tissue
- **Lean Soft Tissue** - Muscle, organs, and other non-bone lean tissue
- **Bone Mineral Content (BMC)** - Total bone mineral weight
- **Fat-Free Mass** - Total body weight minus fat mass
### Derived Indices (Height-Normalized)
- **BMI** - Body Mass Index (standard weight-to-height ratio)
- **FFMI** - Fat-Free Mass Index (normalized muscle mass)
- **FMI** - Fat Mass Index (normalized fat mass)
- **LSTI** - Lean Soft Tissue Index (height-adjusted lean tissue)
- **SMI** - Skeletal Muscle Index (height-adjusted appendicular lean mass)
- **BMDI** - Bone Mineral Density Index (height-adjusted bone content)
- **VAT Index** - Visceral fat normalized by height
### Regional Analysis
- **Android** - Abdominal/trunk fat (higher risk area)
- **Gynoid** - Hip/thigh fat (lower risk area)
- **A/G Ratio** - Android-to-Gynoid ratio (cardiovascular risk indicator)
- **Trunk-to-Limb Fat Ratio** - Ratio of trunk fat to limb fat (central adiposity indicator)
- **Lean Mass Distribution** - Percentage of total lean mass in arms, legs, and trunk
### Symmetry & Balance
- **Arm Symmetry Index** - Right-to-left arm lean mass balance (50% = perfect symmetry)
- **Leg Symmetry Index** - Right-to-left leg lean mass balance (50% = perfect symmetry)
### Supplemental
- **VAT (Visceral Adipose Tissue)** - Deep abdominal fat around organs
- **RMR (Resting Metabolic Rate)** - Estimated daily calorie burn at rest
- **Adjusted Body Weight** - Clinical weight used for medication dosing and nutrition calculations
- **Bone Density** - BMD (g/cm²), T-score, Z-score
## Understanding Your Results
### Body Fat % Ranges (by age and sex)
**Men:**
- Athletes: 6-13%
- Fitness: 14-17%
- Average: 18-24%
- Above Average: 25%+
**Women:**
- Athletes: 14-20%
- Fitness: 21-24%
- Average: 25-31%
- Above Average: 32%+
### FFMI (Fat-Free Mass Index)
Normalized measure of muscle mass:
- **16-17**: Below average
- **18-20**: Average/athletic
- **21-23**: Above average/very muscular
- **24-25**: Elite natural bodybuilder range
- **26+**: Typically requires enhanced training
### A/G Ratio (Android/Gynoid Ratio)
Fat distribution indicator:
- **< 1.0 ** : Lower risk ( more fat in hips / thighs )
- **1.0-1.5**: Moderate
- **> 1.5**: Higher risk (more abdominal fat)
### Trunk-to-Limb Fat Ratio
Central adiposity indicator:
- **< 1.0 ** : More peripheral fat distribution ( healthier )
- **1.0-1.5**: Moderate central fat
- **> 1.5**: High central fat (increased health risk)
### Symmetry Indices
Muscle balance between left and right sides:
- **50%**: Perfect symmetry
- **48-52%**: Normal range (slight asymmetry is common)
- **< 48 % or > 52%**: Notable imbalance (may indicate injury, overuse, or compensation patterns)
### VAT Index
Visceral fat normalized by height:
- **< 0.30 ** : Low visceral fat
- **0.30-0.50**: Moderate
- **> 0.50**: High (increased metabolic risk)
### Lean Mass Distribution
Typical ranges for lean tissue distribution:
- **Arms**: 13-16% of total lean mass
- **Legs**: 32-38% of total lean mass
- **Trunk**: 46-54% of total lean mass
Higher trunk percentage may indicate good core development, while higher leg percentage suggests strong lower body development.
## Tracking Progress
The script appends data to existing CSV files, making it easy to track changes over time:
2025-10-06 15:33:05 -07:00
### Option 1: Batch Processing (Recommended)
```bash
# Place all your PDFs in one directory
data/pdfs/
├── scan-2025-01-15.pdf
├── scan-2025-04-20.pdf
└── scan-2025-10-06.pdf
# Process all at once (automatically skips already-processed dates)
python dexa_extract.py --batch data/pdfs --height-in 74 --outdir data/results
# Add new scans later - only new ones will be processed
cp ~/Downloads/scan-2025-12-15.pdf data/pdfs/
python dexa_extract.py --batch data/pdfs --height-in 74 --outdir data/results
```
### Option 2: Individual Processing
```bash
# Process scans as you get them
python dexa_extract.py data/pdfs/scan-2025-01.pdf --height-in 74 --outdir data/results
python dexa_extract.py data/pdfs/scan-2025-04.pdf --height-in 74 --outdir data/results
python dexa_extract.py data/pdfs/scan-2025-10.pdf --height-in 74 --outdir data/results
```
### Analyzing Results
1. Open `overall.csv` in Excel/Google Sheets to visualize trends
2. Compare `muscle_balance.csv` to track left/right symmetry improvements
3. Review `summary.md` for readable reports of each scan
4. Use `overall.json` for programmatic analysis
2025-10-06 14:32:25 -07:00
## Privacy & Security
⚠️ **Important:** DEXA reports contain personal health information (PHI).
- All PDF files and results are excluded from git via `.gitignore`
- Keep your `data/` directory private
- Don't commit PDFs or output files to version control
- Consider encrypting your data directory if sharing the repository
## Troubleshooting
### "Total mass is missing" error
- Ensure your PDF contains a SUMMARY RESULTS table
- Provide `--weight-lb` as a fallback
### No data extracted or null values
- **Verify your PDF is from BodySpec** - This tool only works with BodySpec reports
- Ensure the PDF is text-based, not a scanned image
- Check that your BodySpec report includes the "SUMMARY RESULTS" table
- Open an issue with a sample (redacted) PDF for support
### Import errors
- Ensure virtual environment is activated: `source venv/bin/activate`
- Reinstall dependencies: `pip install -r requirements.txt`
## Contributing
Contributions welcome! Areas for improvement:
- [ ] Automatic height detection from PDF
- [ ] Data visualization/plotting features
- [ ] GUI interface for non-technical users
- [ ] Export to additional formats (Excel, SQLite, etc.)
2025-10-06 15:33:05 -07:00
- [ ] Support for older BodySpec PDF formats
- [ ] Progress bar for batch processing
2025-10-06 14:32:25 -07:00
## License
MIT License - feel free to use and modify for personal or commercial use.
## Acknowledgments
Built for personal body composition tracking with BodySpec scans. Thanks to BodySpec for providing detailed, consistent DEXA scan reports that make automated analysis possible.
**Disclaimer:** This is an unofficial, independent tool and is not affiliated with or endorsed by BodySpec.
---
**Questions or issues?** Open an issue on GitHub or contact the maintainer.